Pele Suite Publications

Non-technical Articles on Pele

  1. “Combustion-Pele: A New Exascale Capability for Improving Engine Design” – Exascale Computing Project, 2023
  2. “On the Ground in Colorado, NREL Is Simulating Sustainable Aviation Fuel Combustion During Flight” – NREL Media, 2023
  3. “Flying Green” – ASCR Discovery Magazine, 2024

Multimedia/Visualizations

  1. V0026: Direct fuel injection effects in a supersonic cavity flameholder, 2020 APS Gallery of Fluid Motion (Gallery of Fluid Motion Award Winner)
    https://gfm.aps.org/meetings/dfd-2020/5f5badc3199e4c091e67bc55
  2. V0076: Simulation of an RCCI Engine using the Pele Suite of Exascale Codes, 2022 APS Gallery of Fluid Motion (Milton van Dyke Award Winner)
    https://gfm.aps.org/meetings/dfd-2022/63236765199e4c2c0873f9f6
  3. V0074: Lighting a Match in a Fire Extinguisher: Oxycombustion in a Supercritical Carbon Dioxide Turbine, 2023 APS Gallery of Fluid Motion
    https://gfm.aps.org/meetings/dfd-2023/65048294199e4c7ace758fb5

Publications: Development of the Pele Codes

This list summarizes the publications that document the development of the Pele codes and introduction of significant new algorithms or features. When publishing research that relied on use of the Pele codes, it may be appropriate to cite one or multiple of these publications depending on the capabilities utilized.
  1. Pele Suite: Overall Summary
    Henry de Frahan, Marc T., et al. "The Pele Simulation Suite for Reacting Flows at Exascale." Proceedings of the 2024 SIAM Conference on Parallel Processing for Scientific Computing (PP). Society for Industrial and Applied Mathematics, 2024. https://doi.org/10.1137/1.9781611977967.2
  2. PeleC: Initial Development
    Sitaraman, Hariswaran, et al. "Adaptive mesh based combustion simulations of direct fuel injection effects in a supersonic cavity flame-holder." Combustion and Flame 232 (2021): 111531. https://doi.org/10.1016/j.combustflame.2021.111531
  3. PeleC: Performance and GPU Capability
    Henry de Frahan, Marc T., et al. "PeleC: An adaptive mesh refinement solver for compressible reacting flows." The International Journal of High Performance Computing Applications 37.2 (2023): 115-131. https://doi.org/10.1177/1094342022112115
  4. PeleLMeX: Software Development
    Esclapez, Lucas, et al. "PeleLMeX: an AMR Low Mach Number Reactive Flow Simulation Code without level sub-cycling." Journal of Open Source Software 8.90 (2023): 5450. https://doi.org/10.21105/joss.05450
  5. PelePhysics: CEPTR Utility and Chemical Jacobian Capability
    Hassanaly, Malik, et al. "Symbolic construction of the chemical Jacobian of quasi-steady state (QSS) chemistries for Exascale computing platforms." Combustion and Flame 270 (2024) 113740. https://doi.org/10.1016/j.combustflame.2024.113740
  6. PelePhysics: Spray, Soot, and Radiation Modules
    Owen, Landon D., et al. "PeleMP: The Multiphysics Solver for the Combustion Pele Adaptive Mesh Refinement Code Suite." Journal of Fluids Engineering 146.4 (2024): 041103. https://doi.org/10.1115/1.4064494
  7. PelePhysics: Use of SUNDIALS Library for Chemistry Integration
    Balos, Cody J., et al. "SUNDIALS time integrators for exascale applications with many independent systems of ordinary differential equations." The International Journal of High Performance Computing Applications (2024): 10943420241280060. https://doi.org/10.1177/10943420241280060
  8. PeleC and PeleLMeX: Use of State Redistribution (from AMReX library)
    Giuliani, Andrew, et al. "A weighted state redistribution algorithm for embedded boundary grids." Journal of Computational Physics 464 (2022): 111305. https://doi.org/10.1016/j.jcp.2022.111305
  9. PeleC: Use of State Re-Redistribution (from AMReX library)
    Sanchez, I. Barrio, et al. "A new re-redistribution scheme for weighted state redistribution with adaptive mesh refinement." Journal of Computational Physics 504 (2024): 112879. https://doi.org/10.1016/j.jcp.2024.112879
  10. PeleLMeX: Manifold-based Combustion Models
    Perry, Bruce A., et al. “Simulation of a Jet Flame with Inhomogeneous Inlets Using Tabulated and Neural Network Manifold Models.”  U.S. National Combustion Meeting. 2023. https://research-hub.nrel.gov/en/publications/simulation-of-a-jet-flame-with-inhomogeneous-inlets-using-tabulat 
  11. Pele Suite: Exascale Performance
    Malaya, Nicholas, et al. "Experiences readying applications for Exascale." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2023. https://doi.org/10.1145/3581784.360706

Publications: Application of the Pele Codes

This list includes published works where the Pele codes were used to simulate reacting flows or other physical systems. It is meant to give users a sense of the breadth of potential applications of the codes, and potential contacts if interested in simulating something similar to an existing work. The list includes many publications that are not co-authored by the Pele development team; any questions on these publications should be addressed to the relevant authors. To provide corrections or additions to the list, please use this GitHub discussion.
  1. PeleC: Supersonic Cavity-Stabilized Flame
    Sitaraman, Hariswaran, et al. "Visualizations of direct fuel injection effects in a supersonic cavity flameholder." Physical Review Fluids 6.11 (2021): 110504.
    https://doi.org/10.1103/PhysRevFluids.6.110504
  2. PelePhysics: Hydride vapor phase epitaxy
    Hassanaly, Malik, et al. "Surface chemistry models for GaAs epitaxial growth and hydride cracking using reacting flow simulations." Journal of Applied Physics 130.11 (2021).
    https://doi.org/10.1063/5.0061222
  3. PeleC, PeleLMeX: Reactivity-Controlled Compression Ignition Engines
    Wimer, Nicholas T., et al. "Visualizations of a methane/diesel RCCI engine using PeleC and PeleLMeX." Physical Review Fluids 8.11 (2023): 110511. https://doi.org/10.1103/PhysRevFluids.8.110511
  4. PeleC, PeleLMeX: Reactivity-Controlled Compression Ignition Engines
    Wimer, Nicholas T., et al. Examination of a Methane/Diesel RCCI Engine using Pele. No. NREL/CP-2C00-84700. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2023. https://www.osti.gov/biblio/1975823
  5. PeleC: Oxycombustion in Supercritical CO2
    Henry De Frahan, Marc T., et al. "Simulation of Methane Oxycombustion in Supercritical Carbon Dioxide." Turbo Expo: Power for Land, Sea, and Air. Vol. 87073. American Society of Mechanical Engineers, 2023. https://doi.org/10.1115/GT2023-101568
  6. PeleLM: FDF-based Simulations
    Aitzhan, Aidyn, et al. "PeleLM-FDF large eddy simulator of turbulent reacting flows." Combustion Theory and Modelling27.1 (2023): 1-18. https://doi.org/10.1080/13647830.2022.2142673
  7. PeleLMeX: Instabilities in H2/CH4 Flames
    Van, Kyuho, et al. "Quantitative studies of instabilities of confined spherically expanding flames: Application to flame propagation of natural gas blends with hydrogen at engine-relevant conditions." (2023). https://www.researchgate.net/publication/375378762
  8. PeleC: Oblique detonation waves
    Desai, Swapnil, et al. "Effects of non-thermal termolecular reactions on wedge-induced oblique detonation waves." Combustion and Flame 257 (2023): 112681. https://doi.org/10.1016/j.combustflame.2023.112681
  9. PeleC: Engine Knock
    Morii, Youhi, et al. "Analysis of knock onset based on two-dimensional direct numerical simulation and theory of explosive transition of deflagration." Physics of Fluids 35.8 (2023). https://doi.org/10.1063/5.0160236
  10. PeleC: Oblique Detonation Waves
    Ramachandran, Suryanarayan, and Suo Yang. "Micro-jetting and Transverse Waves in Oblique Detonations." Combustion and Flame 265 (2024): 113506. https://doi.org/10.1016/j.combustflame.2024.113506
  11. PeleC: Deflagration to Detonation Transition
    Ramachandran, Suryanarayan, et al. "A numerical investigation of deflagration propagation and transition to detonation in a microchannel with detailed chemistry: Effects of thermal boundary conditions and vitiation." Physics of Fluids35.7 (2023). https://doi.org/10.1063/5.0155645
  12. PeleC: Supercritical Cool Flames
    Ramachandran, Suryanarayan, et al. "Numerical study of turbulent non-premixed cool flames at high and supercritical pressures: Real gas effects and dual peak structure." Combustion and Flame 249 (2023): 112626. https://doi.org/10.1016/j.combustflame.2023.112626
  13. PeleLMeX: Sustainable Aviation Fuel
    Nadakkal Appukuttan, Sreejith, et al. Simulations of fuel-air mixing in a 7 element lean direct injection (LDI) aviation combustor. No. NREL/CP-2C00-85119. National Renewable Energy Laboratory (NREL), Golden, CO (United States), 2023. https://www.osti.gov/biblio/1995457
  14. PeleLMeX: Lean H2 Combustion
    Howarth, T. L., et al. "Thermal diffusion, exhaust gas recirculation and blending effects on lean premixed hydrogen flames." Proceedings of the Combustion Institute 40.1-4 (2024): 105429. https://doi.org/10.1016/j.proci.2024.105429
  15. PeleLMeX: H2 Micromix Combustor DNS
    Howarth, Thomas L., et al. "Direct numerical simulation of a high-pressure hydrogen micromix combustor: Flame structure and stabilisation mechanism." Combustion and Flame 265 (2024): 113504. https://doi.org/10.1016/j.combustflame.2024.113504
  16. PeleLMeX: Pool Fires
    Meehan, Michael A., John C. Hewson, and Peter E. Hamlington. "High resolution numerical simulations of methane pool fires using adaptive mesh refinement." Proceedings of the Combustion Institute 40.1-4 (2024): 105768. https://doi.org/10.1016/j.proci.2024.105768
  17. PeleLMeX: Gas Turbine Flame Stabilization
    Vabre, M., et al. "DNS of ignition and flame stabilization in a simplified gas turbine premixer." Proceedings of the Combustion Institute 40.1-4 (2024): 105701. https://doi.org/10.1016/j.proci.2024.105701
  18. PeleLMeX: Sustainable Aviation Fuel
    Rieth, Martin, et al. "Numerical and experimental investigation of single and multi-injection ignition of F-24/ATJ blends." Proceedings of the Combustion Institute 40.1-4 (2024): 105341. https://doi.org/10.1016/j.proci.2024.105341
  19. PeleLMeX: Turbulent premixed flame DNS
    Zheng, Jian, et al. "DNS of laboratory-scale turbulent premixed counterflow flames under elevated gravity conditions." Physics of Fluids 36.10 (2024). https://doi.org/10.1063/5.0223680
  20. PeleLMeX: H2/NH3 Flames
    Hardaya, Adi P., et al. "Heat release surrogates for NH3/H2/N2–air premixed flames." Proceedings of the Combustion Institute 40.1-4 (2024): 105432. https://doi.org/10.1016/j.proci.2024.105432
  21. PeleLMeX: NH3 Rich-Quench-Lean Combustion DNS
    Rieth, Martin, et al. "Direct numerical simulation of low-emission ammonia rich-quench-lean combustion." Proceedings of the Combustion Institute 40.1-4 (2024): 105558. https://doi.org/10.1016/j.proci.2024.105558
  22. PeleC: H2 Detonations
    Salinas, Jorge S., et al. "Non-thermal termolecular reactions effects on hydrogen-air planar detonation." AIAA SCITECH 2024 Forum. 2024. https://doi.org/10.2514/6.2024-2783
  23. PeleC: Shock Wave-Boundary Layer Interactions
    Kimmel, Elliot, et al. "Evaluation of Shock Wave-Boundary Layer Interaction Modeling Capabilities for Use in a Hypersonic Aerothermoelastic Framework." AIAA SCITECH 2024 Forum. 2024. https://doi.org/10.2514/6.2024-2735
  24. PeleC: Rotating Detonation Engines
    Valencia, Sebastian, et al. "Flow-field analysis and performance assessment of rotating detonation engines under different number of discrete inlet nozzles." Applications in Energy and Combustion Science 20 (2024): 100296. https://doi.org/10.1016/j.jaecs.2024.100296
  25. PeleC: Engine Knock
    Yang, Linlin, et al. "Effect of temperature disturbance on end-gas autoignition and detonation development." Proceedings of the Combustion Institute 40.1-4 (2024): 105220. https://doi.org/10.1016/j.proci.2024.105220
  26. PeleC: Detonation Propagation
    Jun, Daeyoung, Dohwan Kwon, and Bok Jik Lee. "Numerical study on the reinitiation mechanism of detonation propagating through double slits in a planar channel." Combustion and Flame 261 (2024): 113271. https://www.sciencedirect.com/science/article/pii/S0010218023006454
  27. PeleC: Oblique Detonation Waves
    Ramachandran, Suryanarayan, and Suo Yang. "Microscopic hypersonic jetting in oblique detonation waves." AIAA SCITECH 2024 Forum. 2024. https://doi.org/10.2514/6.2024-2781
  28. PeleC: Supersonic Flow Choking
    Jin, Kaiyan, et al. "Numerical investigation on flow choking induced by local heat release and large-scale flow separation in a supersonic combustor." Combustion and Flame 268 (2024): 113627. https://doi.org/10.1016/j.combustflame.2024.113627
  29. PeleC: Deflagration-to-Detonation Transition
    Cai, Xiaodong, et al. "Deflagration-to-detonation transition and detonation propagation in supersonic flows with hydrogen injection and downstream ignition." Physics of Fluids 36.10 (2024) https://doi.org/10.1063/5.0228960
  30. PelePhysics: Stochastic Fields Turbulent Combustion Modeling
    Un, Tin-Hang, and Salvador Navarro-Martinez. "Stochastic fields with adaptive mesh refinement for high-speed turbulent combustion." Combustion and Flame 272 (2025): 113897. https://doi.org/10.1016/j.combustflame.2024.113897